Solving Quadratic Equations by Factoring

Objective

I can and I will solve quadratic equations by factoring.

$9-6$
 Solving Quadratic Equations by Factoring

You have solved quadratic equations by graphing. Another method used to solve quadratic equations is to factor and use the Zero Product Property.

Zero Product Property

For all real numbers a and b,

WORDS	NUMBERS	ALGEBRA
If the product of two quantities equals zero, at least one of the quantities equals zero.	$3(0)=0$	If $a b=0$,
quen	$0(4)=0$	then $a=0$ or $b=0$.

Watch This: Use the Zero Product Property Use the Zero Product Property to solve the equation. Check your answer.

$$
\begin{gathered}
(x-7)(x+2)=\mathbf{0} \\
x-7=0 \text { or } x+2=0 \\
x=7 \text { or } x=-2
\end{gathered}
$$

Use the Zero Product Property.
Solve each equation.
The solutions are 7 and -2 .

o_f Solving Quadratic Equations by Factoring

Watch This Continued

Use the Zero Product Property to solve the equation. Check your answer.

Check | $(x-7)(x+2)=0$ | |
| ---: | :--- |
| $(7-7)(7+2)$ | 0 |
| $(0)(9)$ | 0 |
| 0 | $0 \checkmark$ |

Substitute each solution for x into the original
Check $(x-7)(x+2)=0$ equation.

Solving Quadratic Equations by Factoring

Example 1)

Use the Zero Product Property to solve each equation.

$$
\begin{aligned}
& (0)(0+4) \quad(-4)(-4+4) \\
& \left.\begin{array}{l}
(x)(x+4)=0 \\
x=0 \quad(-4)(0) \\
x+4=0 \\
-4
\end{array}\right) \quad \begin{array}{l}
\text { Checkyour answer. } \\
x=-4
\end{array}
\end{aligned}
$$

Solving Quadratic Equations by Factoring

Example 2)

Use the Zero Product Property to solve the equation. Check your answer.

$$
\begin{array}{cc}
(x+4)(x-3)=0 \\
x+4=0 & x-3=0 \\
x=-4 & x=3
\end{array}
$$

If a quadratic equation is written in standard form, $a x^{2}+b x+c=0$, then to solve the equation, you may need to factor before using the Zero Product Property.

Solving Quadratic Equations by Factoring

Watch This!

Solve the quadratic equation by factoring. Check your answer.

$$
\begin{aligned}
& \boldsymbol{x}^{\mathbf{2}}-\mathbf{6 x}+\mathbf{8}=\mathbf{0} \\
& (x-4)(x-2)=(x-4)(x-2)=\text { astor the trinomial. } \\
& 8 x /-4=0 \text { on } x-2=0 \text { Use the Zero Product } \\
& -2 \times-4 x=4 \text { or } x-4-20 \quad x \text { Podepe } 4 \text {. } \\
& \text { solvegaqh equation. } \\
& \text { Check } \\
& x^{2}-6 x+8=0 \\
& \text { Check } \\
& x=4 \\
& \\
& 0
\end{aligned}
$$

O_6 Solving Quadratic Equations by Factoring

Ex. 3)

Solve the quadratic equation by factoring. Check your answer.

$$
\begin{aligned}
& x^{2}+4 x=21 \\
& -21-21 \\
& x^{2}+4 x-21 \\
& 7-21 / 4
\end{aligned}
$$

$$
(x+7)(x-3)=0
$$

$$
x=-7 \quad x=3
$$

Solving Quadratic Equations by Factoring

Example 3 Continued)

Solve the quadratic equation by factoring. Check your answer.

$$
x^{2}+4 x=21
$$

Check Graph the related quadratic function. The zeros of the related function should be the same as the solutions from factoring.

The graph of $y=x^{2}+4 x-21$ shows that two zeros appear to be -7 and 3 , the same as the solutions from factoring.

9-6 Solving Quadratic Equations by Factoring

Example 4)
Solve the quadratic equation by factoring. Check your answer.

$$
\begin{aligned}
& x^{2}-12 x+36=0 \\
& (x-6)(x-6)
\end{aligned}
$$

9-6 Solving Quadratic Equations by Factoring

Example 5)

$-2 x^{2}=20 x+50$
 $+20 x^{2}=20 x^{2} 50$
 $\frac{+2 x^{2}}{00}=\frac{+2 x^{2}}{2 x^{2 x}+2020} 590$
 $2 x^{2}\left(x^{2}+10 \times 50250\right)$

$x=-5 \quad$ Solve the equation. by Factoring

Example 6)

$$
(3 x-1)(x-1)
$$

$$
\begin{array}{ll}
3 x-1=0 & x-1=0 \\
++1 & x=1 \\
3 x=1 & \\
\frac{3}{3} & \\
x=1 / 3
\end{array}
$$

$$
\begin{aligned}
& 3 x^{2}-4 x+1=0 \\
& 3 x-1 \\
& { }_{-1}^{1 /-4}-3 \quad \begin{array}{ll|l}
3 & -1-3 x^{2} & -1 x \\
\hline
\end{array}
\end{aligned}
$$

$9-6$
 Solving Quadratic Equations by Factoring

Let's Practice!

Pg. 653, \#4-13

