

Objective

I can and I will solve quadratic equations by factoring.

Holt Algebra 1

You have solved quadratic equations by graphing. Another method used to solve quadratic equations is to factor and use the Zero Product Property.

Zero Product Property		
For all real numbers a and b,		
WORDS	NUMBERS	ALGEBRA
If the product of two quantities equals zero, at least one of the quantities equals zero.	3(0) = 0 0(4) = 0	If $ab = 0$, then $a = 0$ or $b = 0$.

Watch This: Use the Zero Product Property

Use the Zero Product Property to solve the equation. Check your answer.

$$(x-7)(x+2)=0$$

$$x - 7 = 0$$
 or $x + 2 = 0$

x = 7 or x = -2

Use the Zero Product Property.

The solutions are 7 and -2.

Watch This Continued

Use the Zero Product Property to solve the equation. Check your answer.

Check (x - 7)(x + 2) = 0 $(7 - 7)(7 + 2) \mid 0$ (0)(9) | 0 0 | 0 ✓ **Check** (x - 7)(x + 2) = 0 $(-2 - 7)(-2 + 2) \mid 0$ (-9)(0) | 0

Substitute each solution for x into the original equation.

9-6 Solving Quadratic Equations by Factoring

Example 1)

Holt Algebra 1

Example 2)

Use the Zero Product Property to solve the equation. Check your answer.

$$(x + 4)(x - 3) = 0$$

 $\chi + 4 = 0$ $x - 3 = 0$
 $\chi = -4$ $\chi = 3$

Holt Algebra 1

If a quadratic equation is written in standard form, $ax^2 + bx + c = 0$, then to solve the equation, you may need to factor before using the Zero Product Property.

Watch This!

Solve the quadratic equation by factoring. Check your answer.

$$x^{2} - 6x + 8 = 0$$

$$(x - 4)(x - 2) = 0$$

$$(x - 4)(x - 4) = 0$$

$$(x - 4)(x - 4)(x - 4) = 0$$

$$(x - 4)(x - 4)(x - 4) = 0$$

$$(x - 4)(x - 4)(x - 4)(x - 4) = 0$$

$$(x - 4)(x - 4)(x - 4)(x - 4)(x - 4) = 0$$

$$(x - 4)(x - 4)$$

Holt Algebra 1

9-6 Solving Quadratic Equations by Factoring

Ex. 3)

Solve the quadratic equation by factoring. Check your answer.

Holt Algebra 1

Example 3 Continued)

Solve the quadratic equation by factoring. Check your answer.

 $x^2 + 4x = 21$

Check Graph the related quadratic function. The zeros of the related function should be the same as the solutions from factoring.

The graph of $y = x^2 + 4x - 21$ shows that two zeros appear to be -7 and 3, the same as the solutions from factoring. \checkmark

Example 4)

Solve the quadratic equation by factoring. Check your answer.

ര

Holt Algebra 1

Example 5)

The equation must be written in standard form. So add 2x² to both sides.

Factor out the GCF 2.

Factor the trinomial.

Use the Zero Product Property. Solve the equation.

9-6 Solving Quadratic Equations by Factoring

Example 6)

Holt Algebra 1

Let's Practice!

Pg. 653, #4 - 13

Holt Algebra 1