35. Entertainment A carnival game board is covered completely in small balloons. You throw darts at the board and try to pop the balloons.
a. Write and simplify an expression describing the probability that the next two balloons popped are red and then blue. (Hint: Write the probabilities as ratios of the areas of rectangles.)
b. What is the probability that the next two balloons popped are red and then blue if $x=3$?
36. ///ERROR ANALYSIS/// Which is incorrect?
 Explain the error.

(B)

$$
\begin{aligned}
& \frac{4 a^{2}-b^{2}}{a^{2}} \cdot \frac{a}{2 a-b} \\
& \frac{(2 a-b)(2 a+b)}{a^{a^{2}}} \cdot \frac{a}{2 a-b}=\frac{2 a+b}{a}
\end{aligned}
$$

37. Critical Thinking Which of the following expressions is NOT equivalent to the other three? Explain why.
a. $\frac{4 x^{2}}{x^{2}-3 x} \cdot \frac{2 x-6}{8 y^{2}}$
b. $\frac{6 x y^{2}}{x^{2}} \div \frac{3 y^{4}}{2 x^{2}}$
c. $\frac{10 x^{4} y}{5 x y^{2}} \div 2 x^{2} y$
d. $\frac{4 x}{x y^{2}+2 y^{2}} \cdot \frac{x^{2}-4}{4 x-8}$

Multiply or divide. Simplify your answer.

38. $\frac{5 p^{3}}{p^{2} q} \cdot \frac{2 q^{3}}{p^{2}}$
39. $\frac{6 m^{2}-18 m}{12 m^{3}+12 m^{2}} \div \frac{m^{2}-9}{m^{2}+4 m+3}$
40. $\frac{2 x^{2}}{4 x-8} \cdot \frac{x^{2}-5 x+6}{x^{5}}$
41. $\frac{x^{2}-9}{4 x} \div\left(4 x^{2}-36\right)$
42. $\frac{33 m-3 m^{2}}{-2 m-4} \div \frac{6 m-66}{m^{2}-4 m}$
43. $\frac{12 w^{4} x^{7}}{3 w^{3}} \cdot \frac{w^{-1} x^{-7}}{4}$
44. Write About It Explain how to divide $\frac{1}{m} \div \frac{3}{4 m}$.

MULTI-Step Test Prep

45. This problem will prepare you for the Multi-Step Test Prep on page 926.

The size of an image projected on a screen depends on how far the object is from the lens, the magnification of the lens, and the distance between the image and the lens. Magnification of a lens is $M=\frac{I}{O}=\frac{y}{x}$ where I is the height of the image, O is the height of the object, x is the distance of the object from the lens, and y is the distance of the image from the lens.
a. If an object 16 cm high is placed 15 cm from the lens, it forms an image 60 cm from the lens. What is the height of the image?
b. Marie moves the same object to a distance of 20 cm from the lens. If the image is the same size as part \mathbf{a}, what is the distance between the image and the lens?
c. What is the magnification of the lens?

