7-4 Division Properties of Exponents (pp. 481-487)

EXAMPLES

- Simplify $\frac{x^{9}}{x^{2}}$.
$\frac{x^{9}}{x^{2}}=x^{9-2}=x^{7} \quad$ Subtract the exponents.

EXERCISES

Simplify.
53. $\frac{2^{8}}{2^{2}}$
54. $\frac{m^{6}}{m}$
55. $\frac{2^{6} \cdot 4 \cdot 7^{3}}{2^{5} \cdot 4^{4} \cdot 7^{2}}$
56. $\frac{24 b^{6}}{4 b^{5}}$
57. $\frac{t^{4} v^{5}}{t v}$
58. $\left(\frac{1}{2}\right)^{-4}$

Simplify each quotient and write the answer in scientific notation.
59. $\left(2.5 \times 10^{8}\right) \div\left(0.5 \times 10^{7}\right)$
60. $\left(2 \times 10^{10}\right) \div\left(8 \times 10^{2}\right)$

7-5 Rational Exponents (pp. 488-493)

EXAMPLES

■ Simplify $\sqrt[3]{r^{6} s^{12}}$.

$$
\begin{aligned}
\sqrt[3]{r^{6} s^{12}} & =\left(r^{6} s^{12}\right)^{\frac{1}{3}} & & \text { Definition of } b^{\frac{1}{n}} \\
& =\left(r^{6}\right)^{\frac{1}{3}} \cdot\left(s^{12}\right)^{\frac{1}{3}} & & \text { Power of a Product } \\
& =\left(r^{6 \cdot \frac{1}{3}}\right) \cdot\left(s^{\left.12 \cdot \frac{1}{3}\right)}\right. & & \text { Power of a Power } \\
& =\left(r^{2}\right) \cdot\left(s^{4}\right) & & \text { Property } \\
& =r^{2} s^{4} & &
\end{aligned}
$$

EXERCISES

Simplify each expression.
61. $81^{\frac{1}{2}}$
62. $343^{\frac{1}{3}}$
63. $64^{\frac{2}{3}}$
64. $\left(2^{6}\right)^{\frac{1}{2}}$

Simplify each expression. All variables represent nonnegative numbers.
65. $\sqrt[5]{z^{10}}$
66. $\sqrt[3]{125 x^{6}}$
67. $\sqrt{x^{8} y^{6}}$
68. $\sqrt[3]{m^{6} n^{12}}$

7-6 Polynomials (pp. 496-501)

EXAMPLES

- Find the degree of the polynomial $3 x^{2}+8 x^{5}$. $3 x^{2}+8 x^{5} \quad 8 x^{5}$ has the highest degree.

The degree is 5 .
■ Classify the polynomial $y^{3}-2 y$ according to its degree and number of terms.

Degree: 3

Terms: 2
The polynomial $y^{3}-2 y$ is a cubic binomial.

EXERCISES

Find the degree of each polynomial.
69. 5
70. $8 s t^{3}$
71. $3 z^{6}$
72. $6 h$

Write each polynomial in standard form. Then give the leading coefficient.
73. $2 n-4+3 n^{2}$
74. $2 a-a^{4}-a^{6}+3 a^{3}$

Classify each polynomial according to its degree and number of terms.
75. $2 s-6$
76. $-8 p^{5}$
77. $-m^{4}-m^{2}-1$
78. 2

