THINK AND DISCUSS

1. Describe how to use the discriminant to find the number of real solutions to a quadratic equation.
2. Choose a method to solve $x^{2}+5 x+4=0$ and explain why you chose that method.
3. Describe how the discriminant can be used to determine if an object will reach a given height.
4. GET ORGANIZED Copy and complete the graphic organizer. In each box, write the number of real solutions.

GUIDED PRACTICE

1. Vocabulary If the discriminant is negative, the quadratic equation has
\qquad real solution(s). (no, one, or two)

Solve using the Quadratic Formula.

2. $x^{2}-5 x+4=0$
5. $x^{2}=-14 x-40$
3. $2 x^{2}=7 x-3$
4. $x^{2}-6 x-7=0$
6. $3 x^{2}-2 x=8$
7. $4 x^{2}-4 x-3=0$

SEE EXAMPLE 2
8. $2 x^{2}-6=0$
9. $x^{2}+6 x+3=0$
10. $x^{2}-7 x+2=0$
p. 671
11. $3 x^{2}=-x+5$
12. $x^{2}-4 x-7=0$
13. $2 x^{2}+x-5=0$

SEE EXAMPLE 3
p. 672
Find the number of real solutions of each equation using the discriminant.
14. $2 x^{2}+4 x+3=0$
15. $x^{2}+4 x+4=0$
16. $2 x^{2}-11 x+6=0$
17. $x^{2}+x+1=0$
18. $3 x^{2}=5 x-1$
19. $-2 x+3=2 x^{2}$
20. $2 x^{2}+12 x=-18$
21. $5 x^{2}+3 x=-4$
22. $8 x=1-x^{2}$
SEE EXAMPLE 4
p. 673
23. Hobbies The height above the ground in meters of a model rocket on a particular launch can be modeled by the equation $h=-4.9 t^{2}+102 t+100$, where t is the time in seconds after its engine burns out 100 m above the ground. Will the rocket reach a height of 600 m ? Use the discriminant to explain your answer.

SEE EXAMPLE 5
p. 673

Solve.

24. $x^{2}+x-12=0$
25. $x^{2}+6 x+9=0$
26. $2 x^{2}-x-1=0$
27. $4 x^{2}+4 x+1=0$
28. $2 x^{2}+x-7=0$
29. $9=2 x^{2}+3 x$
