THINK AND DISCUSS

- **1.** Describe how to use the discriminant to find the number of real solutions to a quadratic equation.
- **2.** Choose a method to solve $x^2 + 5x + 4 = 0$ and explain why you chose that method.
- **3.** Describe how the discriminant can be used to determine if an object will reach a given height.
- **4. GET ORGANIZED** Copy and complete the graphic organizer. In each box, write the number of real solutions.

The number of real solutions of $ax^2 + bx + c = 0$ when...

 $b^2 - 4ac > 0$ is . $b^2 - 4ac < 0$ is . $b^2 - 4ac = 0$ is .

Know I

Not

GUIDED PRACTICE

1. **Vocabulary** If the *discriminant* is negative, the quadratic equation has ______ real solution(s). (*no, one,* or *two*)

Solve using the Quadratic Formula.		
SEE EXAMPLE 1 2. $x^2 - 5x + 4 =$	= 0 3. $2x^2 = 7x - 3$	4. $x^2 - 6x - 7 = 0$
p. 671 5. $x^2 = -14x - $	40 6. $3x^2 - 2x = 8$	7. $4x^2 - 4x - 3 = 0$
SEE EXAMPLE 2 8. $2x^2 - 6 = 0$	9. $x^2 + 6x + 3 = 0$	10. $x^2 - 7x + 2 = 0$
p. 671 11. $3x^2 = -x + 5$	12. $x^2 - 4x - 7 = 0$	13. $2x^2 + x - 5 = 0$
SEE EXAMPLE 3 Find the number of real solutions of each equation using the discriminant.		
p. 672 14. $2x^2 + 4x + 3$	= 0 15. x2 + 4x + 4 = 0	16. $2x^2 - 11x + 6 = 0$
17. $x^2 + x + 1 =$	0 18. $3x^2 = 5x - 1$	19. $-2x + 3 = 2x^2$
20. $2x^2 + 12x = -$	-18 21. $5x^2 + 3x = -4$	22. $8x = 1 - x^2$
SEE EXAMPLE 4 23. Hobbies The height above the ground in meters of a model rocket on a		
p. 673 particular launch can be modeled by the equation $h = -4.9t^2 + 102t + 100$, where <i>t</i> is the time in seconds after its engine burns out 100 m above the ground. Will the rocket reach a height of 600 m? Use the discriminant to explain your answer.		
SEE EXAMPLE 5 Solve.		
p. 673 24. $x^2 + x - 12 =$	= 0 25. $x^2 + 6x + 9 = 0$	26. $2x^2 - x - 1 = 0$
27. $4x^2 + 4x + 1$		29. $9 = 2x^2 + 3x$